53 research outputs found

    Innovative light sources for phototherapy

    Get PDF
    AbstractThe use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a "pure" technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field

    An ingestible capsule for the photodynamic therapy of helicobacter pylori infection

    Get PDF
    Helicobacter pylori (H. pylori) is a Gram-negative pathogen bacterium affecting the mucosa of the stomach and causing severe gastric diseases. H. pylori-related infections are currently treated with pharmacological therapies, which are associated with increasing antibiotic resistance and consequent reduction of the efficacy down to 70%-85%. Moreover, drugs have generally side effects that further affect the healthcare system in terms of additional financial and medical efforts. The aim of this study is to present an innovative device for the treatment of H. pylori infection, consisting of an ingestible lighting capsule performing photodynamic therapy by means of light at specific wavelengths. The proposed treatment is minimally invasive and the described system can be considered the first photodynamic swallowable device ever proposed. Preliminary experiments demonstrated that the capsule integrated with LED sources can provide the required lighting power to kill the bacterium with an efficiency up to about 96%

    Crosslinked Hyaluronic Acid with Liposomes and Crocin Confers Cytoprotection in an Experimental Model of Dry Eye

    Get PDF
    Dry eye disease (DED) is a multifactorial condition caused by tear deficiency and accompanied by ocular surface damage. Recent data support a key role of oxidative and inflammatory processes in the pathogenesis of DED. Hyaluronic acid (HA) is widely used in artificial tears to treat DED by improving ocular hydration and reducing surface friction. Crocin (Cr), the main constituent of saffron, is a renowned compound that exhibits potent antioxidant and anti-inflammatory effects. The present study was undertaken to assess the viscosity and muco-adhesiveness of a photoactivated formulation with crosslinked HA (cHA), Cr, and liposomes (cHA-Cr-L). Our aim was also to evaluate whether cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes in human corneal epithelial cells (HCECs). Viscosity was measured using a rotational rheometer, and then the muco-adhesiveness was evaluated. Under hyperosmolarity (450 mOsm), the HCECs were treated with cHA-Cr-L. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR). The levels of reactive oxygen species (ROS) were measured using the DCF assay. The combined action of cHA-Cr-L produced a higher viscosity and muco-adhesiveness compared to the control. The anti-inflammatory effect of cHA-Cr-L was achieved through a significant reduction of IL-1beta and TNFalpha (p < 0.001). The results also showed that cHA-Cr-L reduces ROS production under conditions of hyperosmolarity (p < 0.001). We conclude that cHA-Cr-L has potential as a therapeutic agent in DED, which should be further investigated

    Fibroblast autofluorescence in connective tissue disorders: a future tool for clinical and differential diagnosis?

    Get PDF
    Marfan syndrome (MFS) is an inherited disorder of connective tissue due to mutations in FBN1 (90%) and TGFBR1 and TGFBR2 (5 to 10%) genes. Clinical and differential diagnosis is difficult because of the inter- and intrafamiliar marked heterogeneity and the variable onset age of clinical manifestations. Among the disorders, in differential diagnosis, thoracic aortic aneurysm (TAA) and Ullrich scleroatonic muscular dystrophy (UCMD) are reported. We evaluate the possibility of utilizing autofluorescence (AF) analysis as a diagnostic tool in the clinical and/or differential diagnosis of MFS and related disorders and in the investigation of the molecular mechanisms involved. Both multispectral imaging autofluorescence microscopy (MIAM) and autofluorescence microspectroscopy (AMS) have been used to characterize AF emission of fibroblasts from patients affected by inherited connective tissue disorders. Our preliminary results show significant differences in AF emission between normal and pathological fibroblasts, suggesting possible improvement in diagnostics of connective tissue disorders by AF analysis
    • …
    corecore